metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C28.35C24, D28.31C23, Dic14.30C23, C4○D4⋊16D14, (C2×D4)⋊42D14, (C2×Q8)⋊31D14, C7⋊C8.14C23, D4⋊D7⋊19C22, C28.427(C2×D4), (C2×C28).218D4, Q8⋊D7⋊18C22, D4⋊D14⋊13C2, C4.35(C23×D7), D4.8D14⋊7C2, C4○D28⋊21C22, (C2×D28)⋊59C22, (D4×C14)⋊46C22, C7⋊5(D8⋊C22), D4.D7⋊17C22, (Q8×C14)⋊38C22, (C7×D4).23C23, C7⋊Q16⋊16C22, D4.23(C22×D7), D4.9D14⋊13C2, D4.D14⋊13C2, Q8.23(C22×D7), (C7×Q8).23C23, C28.C23⋊13C2, (C2×C28).557C23, (C22×C4).282D14, (C22×C14).124D4, C14.160(C22×D4), C23.34(C7⋊D4), C4.Dic7⋊37C22, (C2×Dic14)⋊69C22, (C22×C28).292C22, (C2×C4○D4)⋊4D7, (C14×C4○D4)⋊4C2, (C2×C7⋊C8)⋊23C22, (C2×C4○D28)⋊31C2, C4.121(C2×C7⋊D4), (C2×C14).591(C2×D4), (C7×C4○D4)⋊18C22, (C2×C4.Dic7)⋊31C2, C22.21(C2×C7⋊D4), C2.33(C22×C7⋊D4), (C2×C4).203(C7⋊D4), (C2×C4).246(C22×D7), SmallGroup(448,1275)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C28.C24
G = < a,b,c,d,e | a28=b2=c2=e2=1, d2=a14, bab=a-1, ac=ca, ad=da, eae=a15, bc=cb, bd=db, ebe=a21b, cd=dc, ece=a14c, de=ed >
Subgroups: 1044 in 262 conjugacy classes, 107 normal (45 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, D7, C14, C14, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×M4(2), C4○D8, C8⋊C22, C8.C22, C2×C4○D4, C2×C4○D4, C7⋊C8, Dic14, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C22×D7, C22×C14, C22×C14, D8⋊C22, C2×C7⋊C8, C4.Dic7, D4⋊D7, D4.D7, Q8⋊D7, C7⋊Q16, C2×Dic14, C2×C4×D7, C2×D28, C4○D28, C4○D28, C2×C7⋊D4, C22×C28, C22×C28, D4×C14, D4×C14, Q8×C14, C7×C4○D4, C7×C4○D4, C2×C4.Dic7, D4.D14, C28.C23, D4⋊D14, D4.8D14, D4.9D14, C2×C4○D28, C14×C4○D4, C28.C24
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, C7⋊D4, C22×D7, D8⋊C22, C2×C7⋊D4, C23×D7, C22×C7⋊D4, C28.C24
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(29 30)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)(39 48)(40 47)(41 46)(42 45)(43 44)(57 73)(58 72)(59 71)(60 70)(61 69)(62 68)(63 67)(64 66)(74 84)(75 83)(76 82)(77 81)(78 80)(85 94)(86 93)(87 92)(88 91)(89 90)(95 112)(96 111)(97 110)(98 109)(99 108)(100 107)(101 106)(102 105)(103 104)
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 79 15 65)(2 80 16 66)(3 81 17 67)(4 82 18 68)(5 83 19 69)(6 84 20 70)(7 57 21 71)(8 58 22 72)(9 59 23 73)(10 60 24 74)(11 61 25 75)(12 62 26 76)(13 63 27 77)(14 64 28 78)(29 89 43 103)(30 90 44 104)(31 91 45 105)(32 92 46 106)(33 93 47 107)(34 94 48 108)(35 95 49 109)(36 96 50 110)(37 97 51 111)(38 98 52 112)(39 99 53 85)(40 100 54 86)(41 101 55 87)(42 102 56 88)
(1 47)(2 34)(3 49)(4 36)(5 51)(6 38)(7 53)(8 40)(9 55)(10 42)(11 29)(12 44)(13 31)(14 46)(15 33)(16 48)(17 35)(18 50)(19 37)(20 52)(21 39)(22 54)(23 41)(24 56)(25 43)(26 30)(27 45)(28 32)(57 85)(58 100)(59 87)(60 102)(61 89)(62 104)(63 91)(64 106)(65 93)(66 108)(67 95)(68 110)(69 97)(70 112)(71 99)(72 86)(73 101)(74 88)(75 103)(76 90)(77 105)(78 92)(79 107)(80 94)(81 109)(82 96)(83 111)(84 98)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,30)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,73)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67)(64,66)(74,84)(75,83)(76,82)(77,81)(78,80)(85,94)(86,93)(87,92)(88,91)(89,90)(95,112)(96,111)(97,110)(98,109)(99,108)(100,107)(101,106)(102,105)(103,104), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,79,15,65)(2,80,16,66)(3,81,17,67)(4,82,18,68)(5,83,19,69)(6,84,20,70)(7,57,21,71)(8,58,22,72)(9,59,23,73)(10,60,24,74)(11,61,25,75)(12,62,26,76)(13,63,27,77)(14,64,28,78)(29,89,43,103)(30,90,44,104)(31,91,45,105)(32,92,46,106)(33,93,47,107)(34,94,48,108)(35,95,49,109)(36,96,50,110)(37,97,51,111)(38,98,52,112)(39,99,53,85)(40,100,54,86)(41,101,55,87)(42,102,56,88), (1,47)(2,34)(3,49)(4,36)(5,51)(6,38)(7,53)(8,40)(9,55)(10,42)(11,29)(12,44)(13,31)(14,46)(15,33)(16,48)(17,35)(18,50)(19,37)(20,52)(21,39)(22,54)(23,41)(24,56)(25,43)(26,30)(27,45)(28,32)(57,85)(58,100)(59,87)(60,102)(61,89)(62,104)(63,91)(64,106)(65,93)(66,108)(67,95)(68,110)(69,97)(70,112)(71,99)(72,86)(73,101)(74,88)(75,103)(76,90)(77,105)(78,92)(79,107)(80,94)(81,109)(82,96)(83,111)(84,98)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(29,30)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,73)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67)(64,66)(74,84)(75,83)(76,82)(77,81)(78,80)(85,94)(86,93)(87,92)(88,91)(89,90)(95,112)(96,111)(97,110)(98,109)(99,108)(100,107)(101,106)(102,105)(103,104), (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,79,15,65)(2,80,16,66)(3,81,17,67)(4,82,18,68)(5,83,19,69)(6,84,20,70)(7,57,21,71)(8,58,22,72)(9,59,23,73)(10,60,24,74)(11,61,25,75)(12,62,26,76)(13,63,27,77)(14,64,28,78)(29,89,43,103)(30,90,44,104)(31,91,45,105)(32,92,46,106)(33,93,47,107)(34,94,48,108)(35,95,49,109)(36,96,50,110)(37,97,51,111)(38,98,52,112)(39,99,53,85)(40,100,54,86)(41,101,55,87)(42,102,56,88), (1,47)(2,34)(3,49)(4,36)(5,51)(6,38)(7,53)(8,40)(9,55)(10,42)(11,29)(12,44)(13,31)(14,46)(15,33)(16,48)(17,35)(18,50)(19,37)(20,52)(21,39)(22,54)(23,41)(24,56)(25,43)(26,30)(27,45)(28,32)(57,85)(58,100)(59,87)(60,102)(61,89)(62,104)(63,91)(64,106)(65,93)(66,108)(67,95)(68,110)(69,97)(70,112)(71,99)(72,86)(73,101)(74,88)(75,103)(76,90)(77,105)(78,92)(79,107)(80,94)(81,109)(82,96)(83,111)(84,98) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(29,30),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49),(39,48),(40,47),(41,46),(42,45),(43,44),(57,73),(58,72),(59,71),(60,70),(61,69),(62,68),(63,67),(64,66),(74,84),(75,83),(76,82),(77,81),(78,80),(85,94),(86,93),(87,92),(88,91),(89,90),(95,112),(96,111),(97,110),(98,109),(99,108),(100,107),(101,106),(102,105),(103,104)], [(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,79,15,65),(2,80,16,66),(3,81,17,67),(4,82,18,68),(5,83,19,69),(6,84,20,70),(7,57,21,71),(8,58,22,72),(9,59,23,73),(10,60,24,74),(11,61,25,75),(12,62,26,76),(13,63,27,77),(14,64,28,78),(29,89,43,103),(30,90,44,104),(31,91,45,105),(32,92,46,106),(33,93,47,107),(34,94,48,108),(35,95,49,109),(36,96,50,110),(37,97,51,111),(38,98,52,112),(39,99,53,85),(40,100,54,86),(41,101,55,87),(42,102,56,88)], [(1,47),(2,34),(3,49),(4,36),(5,51),(6,38),(7,53),(8,40),(9,55),(10,42),(11,29),(12,44),(13,31),(14,46),(15,33),(16,48),(17,35),(18,50),(19,37),(20,52),(21,39),(22,54),(23,41),(24,56),(25,43),(26,30),(27,45),(28,32),(57,85),(58,100),(59,87),(60,102),(61,89),(62,104),(63,91),(64,106),(65,93),(66,108),(67,95),(68,110),(69,97),(70,112),(71,99),(72,86),(73,101),(74,88),(75,103),(76,90),(77,105),(78,92),(79,107),(80,94),(81,109),(82,96),(83,111),(84,98)]])
82 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 14J | ··· | 14AA | 28A | ··· | 28L | 28M | ··· | 28AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 28 | 28 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 28 | 28 | 2 | 2 | 2 | 28 | 28 | 28 | 28 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | D14 | D14 | D14 | D14 | C7⋊D4 | C7⋊D4 | D8⋊C22 | C28.C24 |
kernel | C28.C24 | C2×C4.Dic7 | D4.D14 | C28.C23 | D4⋊D14 | D4.8D14 | D4.9D14 | C2×C4○D28 | C14×C4○D4 | C2×C28 | C22×C14 | C2×C4○D4 | C22×C4 | C2×D4 | C2×Q8 | C4○D4 | C2×C4 | C23 | C7 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 1 | 1 | 3 | 1 | 3 | 3 | 3 | 3 | 12 | 18 | 6 | 2 | 12 |
Matrix representation of C28.C24 ►in GL4(𝔽113) generated by
17 | 36 | 0 | 0 |
77 | 90 | 0 | 0 |
96 | 77 | 96 | 77 |
36 | 23 | 36 | 23 |
1 | 0 | 0 | 0 |
24 | 112 | 0 | 0 |
8 | 4 | 17 | 8 |
83 | 105 | 77 | 96 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
112 | 0 | 112 | 0 |
0 | 112 | 0 | 112 |
98 | 0 | 0 | 0 |
0 | 98 | 0 | 0 |
0 | 0 | 98 | 0 |
0 | 0 | 0 | 98 |
112 | 0 | 111 | 0 |
0 | 112 | 0 | 111 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(113))| [17,77,96,36,36,90,77,23,0,0,96,36,0,0,77,23],[1,24,8,83,0,112,4,105,0,0,17,77,0,0,8,96],[1,0,112,0,0,1,0,112,0,0,112,0,0,0,0,112],[98,0,0,0,0,98,0,0,0,0,98,0,0,0,0,98],[112,0,0,0,0,112,0,0,111,0,1,0,0,111,0,1] >;
C28.C24 in GAP, Magma, Sage, TeX
C_{28}.C_2^4
% in TeX
G:=Group("C28.C2^4");
// GroupNames label
G:=SmallGroup(448,1275);
// by ID
G=gap.SmallGroup(448,1275);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,675,570,1684,235,102,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^28=b^2=c^2=e^2=1,d^2=a^14,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e=a^15,b*c=c*b,b*d=d*b,e*b*e=a^21*b,c*d=d*c,e*c*e=a^14*c,d*e=e*d>;
// generators/relations